

Ф – Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Нанометрология»

по направлению 28.03.02 «Наноинженерия»

(бакалавриат)

1. Цели и задачи освоения дисциплины

Цели освоения дисциплины:

формирование у студента теоретических знаний и практических навыков метрологического обеспечения нанотехнологий и аналитического контроля наноматериалов; формирование у студента комплексных общепрофессиональных и профессиональных компетенций в сфере наноинженерии.

Задачи освоения дисциплины:

Ознакомление студентов с общими принципами обеспечения единства измерений в Российской Федерации и с законодательной базой, построенной на концептуальностратегической основе;

Ознакомление студентов с методами и средствами метрологического обеспечения исследований нанотехнологий и оценки соответствия продукции наноиндустрии.

Рассмотрение прикладных вопросов метрологического обеспечения в сфере нанотехнологий и продукции наноиндустрии.

2. Место дисциплины в структуре ОПОП

Дисциплина является обязательной и относится к вариативной части Блока Б1 «Дисциплины (модули)» основной профессиональной образовательной программы (ОПОП), устанавливаемой вузом. Данная дисциплина является профильной дисциплиной в системе подготовки бакалавра по направлению 28.03.02 «Наноинженерия». Она направлена на формирование компетенций по технологическому и нормативно-правовому обеспечению инновационной деятельности в области наноинженерии, реализации инновационных проектов создания конкурентоспособных новых технологий, выполнению работ по проекту в соответствии с требованиями по качеству нового продукта и т.п.

Дисциплина читается в 5-ом семестре 3-ого курса студентам очной формы обучения и базируется на отдельных компонентах компетенций, сформированных у обучающихся в ходе изучения предшествующих учебных дисциплин учебного плана:

«Начертательная геометрия»,

- «Инженерная графика»,
- «Метрология, стандартизация и технические измерения»,
- «Методы и средства измерений и контроля»,
- «Физический практикум по оптике»,
- «Физика. Оптика»,
- «Физика. Электромагнетизм»,
- «Управление качеством»,
- а также при прохождении учебных и производственных практик.

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

Для освоения дисциплины студент должен иметь следующие «входные» знания, умения, навыки и компетенции:

- дифференцирование и интегрирование функций,
- знание базовых понятий и определений в области метрологии;
- уметь использовать основные программные средства, пользоваться глобальными информационными ресурсами,
- владеть современными средствами телекоммуникаций.

Результаты освоения дисциплины будут необходимы для дальнейшего процесса обучения в рамках поэтапного формирования компетенций при изучении следующих специальных дисциплин:

- «Наноэлектроника»,
- «Применение ЭВМ в инженерных расчетах»,
- «Физические основы технологии полупроводниковых приборов и интегральных микросхем»,
 - «Программные статистические комплексы»,
 - «Физико-химические основы нанотехнологий»,
 - «Физика ядра»,
 - «Физический практикум»
 - «Испытания изделий»,
 - «Композиционные материалы. Металломатричные, с полимерной матрицей»,
 - «Системы управления технологическими процессами»,
 - «Технологические системы в нанотехнологиях»,
 - «Методы диагностики в нанотехнологиях»,
- а также для прохождения учебной, производственной и преддипломной практик, государственной итоговой аттестации, выполнения и защиты выпускной квалификационной работы.

3. Перечень планируемых результатов освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование реализуемой компетенции	Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций
ОПК-6	Знать: методы и средства измерений, способные
Способность проектировать	обеспечить необходимое качество измерений
и сопровождать	нанообъектов; основные технические и метрологические
производство технических	характеристики типовых средств измерений; содержание
объектов, систем и	существующей нормативно-технической документации.
процессов в области	Уметь: определять оптимальную номенклатуру
наноинженерии	измеряемых и контролируемых параметров технической
	продукции, диапазон их измерения и требования к
	точности; проводить оценку контролепригодности
	продукции; проводить метрологическую экспертизу
	технической документации; выбирать и использовать
	средства измерения с учетом их метрологических
	характеристик.
	Владеть: навыками использования современных методов
	измерений, испытаний и контроля нанообъектов; навыками

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

	плонительный и опронительный или оффективного		
	планирования и организации испытаний для эффективного		
	воздействия на качество продукции.		
ПК-2	Знать: методики комплексного анализа обеспечения		
Использовать методики	качества нанообъектов, основанные на инструментах		
комплексного анализа	нанометрологии.		
структуры и свойств	Уметь: применять методики комплексного анализа		
наноструктурированных	обеспечения качества нанообъектов, основанные на		
композиционных материалов	инструментах нанометрологии.		
для испытаний	Владеть: методиками комплексного анализа обеспечения		
инновационной продукции	качества нанообъектов, основанные на инструментах		
наноиндустрии	нанометрологии.		
ПК-3	Знать: основные инструменты нанометрологии		
Проведение испытаний	Уметь: определять контролируемые параметры		
изделий из	нанообъектов		
наноструктурированных	Владеть: методиками оценки погрешности и		
композиционных материалов	неопределенности измерений параметров нанообъектов		
с целью выявления			
показателей уровня качества,			
функциональных			
потребительских свойств,			
брака и путей его устранения			

4. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы (72 часа).

5. Образовательные технологии

В ходе изучения дисциплины используются традиционные методы и формы обучения (лекции, в т.ч. с элементами проблемного изложения, семинарские занятия, самостоятельная работа).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к тестированию; самостоятельная работа под контролем преподавателя в форме плановых консультаций, творческих контактов, внеаудиторная самостоятельная работа при выполнении студентом домашних заданий учебного и творческого характера.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный процесс, коллоквиум, тестирование.

Промежуточная аттестация проводится в форме: зачет.